Microphase versus macrophase separation in the square-well-linear fluid: A theoretical and computational study. in Physical review. E / Phys Rev E. 2023 Sep;108(3-1):034602. doi: 10.1103/PhysRevE.108.034602.
2023
ASL VCO
Tipo pubblicazione
Journal Article
Autori/Collaboratori (6)Vedi tutti...
Costa D
Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.
Munaò G
Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.
Bomont JM
Université de Lorraine, LCP-A2MC, EA 3469, 1 Bd. François Arago, Metz F-57078, France.

et alii...
Abstract
Due to the presence of competing interactions, the square-well-linear fluid can exhibit either liquid-vapor equilibrium (macrophase separation) or clustering (microphase separation). Here we address the issue of determining the boundary between these two regimes, i.e., the Lifshitz point, expressed in terms of a relationship between the parameters of the model. To this aim, we carry out Monte Carlo simulations to compute the structure factor of the fluid, whose behavior at low wave vectors accurately captures the tendency of the fluid to form aggregates or, alternatively, to phase separate. Specifically, for a number of different combinations of attraction and repulsion ranges, we make the system go across the Lifshitz point by increasing the strength of the repulsion. We use simulation results to benchmark the performance of two theories of fluids, namely, the hypernetted chain (HNC) equation and the analytically solvable random phase approximation (RPA); in particular, the RPA theory is applied with two different prescriptions as for the direct correlation function inside the core. Overall, the HNC theory proves to be an appropriate tool to characterize the fluid structure and the low-wave-vector behavior of the structure factor is consistent with the threshold between microphase and macrophase separation established through simulation. The structural predictions of the RPA theory turn out to be less accurate, but this theory offers the advantage of providing an analytical expression of the Lifshitz point. Compared to simulation, both RPA schemes predict a Lifshitz point that falls within the macrophase-separation region of parameters: in the best case, barriers roughly twice higher than predicted are required to attain clustering conditions.
Accesso banca dati bibliografica
Accedi alla scheda bibliografica del documento in PUBMED
Se sei accreditato in BVS-P effettua prima l'accesso per utilizzare i nostri servizi.
PMID : 37849187
DOI : 10.1103/PhysRevE.108.034602